

磷脂酶 C (PLC) 活性检测试剂盒 Phospholipase C (PLC) Activity Assay Kit

P-Nitrophenylphosphorylcholine

Catalog Number **AKFA015C**Storage Temperature **2-8°C**Size **50T/48S**

Visible Spectrophotometry

磷脂酶 C (PLC) 活性检测试剂盒

Phospholipase C (PLC) Activity Assay Kit

一、产品描述

磷脂酶 C (PLC) 广泛存在于微生物及动植物的组织和细胞中,是一种能够水解甘油磷酸酯 C3 位点甘油磷酸酯键的脂类水解酶,在生物生命活动中起着第二信使的作用,作为磷脂酰肌醇信号通路的关键酶,在细胞代谢、细胞传递、生长发育等方面具有重要作用。

磷脂酶 C 能够催化 NPPC 水解生成对硝基苯酚,产物在 410 nm 处具有特征吸收峰,通过吸光值变化即可表征磷脂酶 C 的活性。

二、产品内容

名称	试剂规格	储存条件
提取液	液体 50 mL×1 瓶	4℃保存
试剂一	液体 55 mL×1 瓶	4℃保存
试剂二	液体 25 mL×1 瓶	4℃避光保存
试剂三	液体 20 mL×1 瓶	4℃保存

三、产品使用说明

测定过程中所需要的仪器和试剂: 可见分光光度计、1 mL 玻璃比色皿(光径 10 mm)、研钵/匀浆器、可调式移液器、台式离心机、超速离心机、超速离心管、恒温水浴/培养箱和蒸馏水。

1.粗酶液的制备(可根据预实验结果适当调整样本量及比例)

- ①细菌或细胞: 离心收集细菌或细胞至离心管内, 按照细菌或细胞数量(10⁴个): 提取液体积(mL)为(500-1000): 1的比例(建议500万细菌或细胞加入1mL提取液)处理样品, 冰浴超声破碎(功率300W, 超声3s, 间隔7s, 总时间3min), 4°C10000g离心5min, 取全部上清至超速离心管中, 4°C100000g离心30min, 弃上清, 留沉淀; 沉淀中加入1mL试剂一, 充分混匀即为粗酶液。
- ②组织:按照组织质量(g):提取液体积(mL)为1:(5-10)的比例(建议称取0.1 g, 加入1 mL 提取液)处理样品,冰浴匀浆,4℃10000g 离心5 min,取全部上清至超速离心管中,4℃100000 g 离心30 min,弃上清,**留沉淀**;沉淀中加入1 mL 试剂一,充分混匀即为粗酶液。
 - ③血清(浆)、培养液等液体样本:直接测定或适当稀释后再进行检测。

2.测定步骤

- ①分光光度计预热 30 min 以上,调节波长至 410 nm,蒸馏水调零。
- ②在离心管中依次加入下列试剂:

试剂	测定管	空白管
~47/14 	(μL)	(μL)
粗酶液	100	-
试剂一	-	100
试剂二	500	500
充分混匀,	, 37℃准确反应 30 min	
 试剂三	400	400

吸光值测定: 测定 410 nm 处吸光值,记为 A 测定和 A 空白;计算 $\Delta A = A$ 测定-A 空白。注:空白管只需测定 1-2 次。

- 3.磷脂酶 C (PLC) 活性计算(标准曲线: y=0.0194x-0.0092, R²=0.9992)
- ①按组织蛋白浓度计算

单位定义:每 mg 组织蛋白每分钟生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

②按组织样本质量计算

单位定义:每g组织每分钟生成1nmol对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/g) =
$$\frac{(\Delta A + 0.0092) \times V \ \textit{反} \, \textit{E} \times V \ \textit{样} \, \textit{E}}{0.0194 \times V \ \textit{F} \times W \times T} = \frac{17.18 \times (\Delta A + 0.0092)}{W}$$

③按细菌或细胞数量计算

单位定义:每10⁴细菌或细胞每分钟生成1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/10⁴ cell) =
$$\frac{(\Delta A + 0.0092) \times V \text{ 反总} \times V \text{ 样总}}{0.0194 \times V \text{ 样×细菌或细胞数量} \times T} = \frac{17.18 \times (\Delta A + 0.0092)}{\text{细菌或细胞数量}}$$

④按液体样本体积计算

单位定义:每 mL 液体样本每分钟生成 1 nmol 对硝基苯酚所需的酶量定义为一个酶活力单位。

PLC(U/mL) =
$$\frac{(\Delta A + 0.0092) \times V$$
 反总 $0.0194 \times V$ 样×T = 17.18×($\Delta A + 0.0092$)

注释: V样: 反应体系中加入粗酶液的体积, 0.1 mL; V样总: 粗酶液总体积, 1 mL; V反总: 反应体系总体积, 1 mL; T: 反应时间, 30 min; Cpr: 样本蛋白浓度, mg/mL; W: 样本质量, g; 细菌或细胞数量: 以万计。

四、注意事项

为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书内容为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取 2-3 个预期差异较大的样本进行预测定,过程中问题请您及时与工作人员联系。

boxbio

Manufactured and Distributed by

Beijing Boxbio Science & Technology Co., Ltd. Liandong U Valley, Tongzhou District, Beijing, China TEL: 400-805-8228

 $\label{eq:encoder} E\text{-MAIL: techsupport@boxbio.cn}$ Copyright © 2020 Boxbio, All Rights Reserved.

